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LETTER TO THE EDITOR 

Universal amplitudes in finite-size scaling: generalisation to 
arbitrary dimensionality 

John L Cardy 
Department of Physics, University of California, Santa Barbara, California 93106, USA 

Received 3 July 1985 

Abstract. The relationship between the correlation length and critical exponents in finite 
width strips in two dimensions is generalised to cylindrical geometries of arbitrary 
dimensionality d. For d # 2 these correspond, however, to curved spaces. The result is 
verified for the spherical model. 

A striking result of conformal invariance at critical points has been the relationship 
between the amplitude A of the finite-size scaling behaviour of the correlation length 
6 of an infinitely long strip of width L with periodic boundary conditions, defined by 
t-' - A / L ,  and the scaling dimension x of the corresponding scaling operator (Cardy 
1984). This relation states that 

A = 2rx. (1) 

It has been verified in a large number of two-dimensional models (Luck 1982, Derrida 
and de Seze 1982, Nightingale and Blote 1983, Privman and Fisher 1984, Penson and 
Kolb 1984, Alcaraz et a1 1985), and gives a very accurate way of determining the 
scaling dimensions numerically. It would therefore be very useful to generalise this 
result to dimensionality d Z 2. In this letter we describe such a generalisation. Unfortu- 
nately the result appears to be difficult to utilise for numerical work. 

For the purposes of generalisation, it is convenient first to restate the two- 
dimensional conformal invariance argument in a fashion independent of the use of 
complex variables. Consider a critical theory defined on the infinite two-dimensional 
plane R2. In polar coordinates, the metric is 

ds2 = dr2+ r2 d0'. (2) 

Under the coordinate transformation 

where --OO < U <CO, the metric can be written 

ds2 = R-2 exp(2u/R)(du2+ R2 d02) (4) 

which can be recognised as a conformal factor multiplying the natural metric for the 
space S' xR', i.e. the surface of a circular cylinder of radius R. The transformation 
(3) thus conformally relates theories defined on R2 and S' xR'. At a critical point, a 
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two-point correlation function transforms according to 

(cp(exp( U'/ RI, 61)cp(exp(u2/ RI, 62))d 

= R2x exp[-x(u,+ U Z ) / R l ( c p ( U l ,  81)cp(U2,  62))S'XRL. ( 5 )  

Since the correlation function on the left-hand side is proportional to Ir, - r21-2x, this 
determines the coirelation function on the cylinder and gives a correlation length 
6 = R/x. This agrees with (1) if we note that L = 27rR. 

The generalisation to d # 2 is now straightforward. The metric on Rd is written 

ds2 = dr2+ r2 d o 2  ( 6 )  

where, for example, in d = 3, 

d o 2  = de2 + sin2 6 d+h2. (7)  

Under (3) the metric is transformed conformally into 

ds2 = R-2 exp(2u/ R)(du2+ R2 d o 2 )  (8) 

which, apart from a conformal factor, is the natural metric for Sd-'  X R ' .  Thus critical 
theories on Rd are conformally related to those on this cylindrical geometry. As before, 
the correlation length along the cylinder is given by 6 = R/x. 

This result is supposed to be valid in the continuum limit, at the critical point. For 
it to be useful for numerically estimating the scaling dimension x, it is necessary to 
approximate the continuum by a sequence of lattices. It is most convenient to choose 
these lattices to be regular. For d # 2, however, the space Sd-'  X R '  is curved, and 
only a finite number of regular lattices may be embedded in the space. For S2 ,  for 
example, these correspond to the Platonic solids, the largest of which is the dodecahe- 
dron (12 lattice points). It is not clear whether this approximates the continuum 
sufficiently well to give accurate values for the exponents. In addition, the lattice 
approximation to Sd-' x R' should incorporate those symmetries which correspond to 
translations in Rd, and mix up the spaces Sd- '  and R'. This will be true if, on distance 
scales much less than the inverse curvature R, the lattice is isotropic in all d directions. 
If this last requirement is relaxed, by introducing a lattice which approximates the 
symmetries of Sd-' only, then the amplitudes A will not be universal, but ratios of 
them will be. In this case it may be simplest to take the anisotropic limit, and to 
consider an equivalent quantum Hamiltonian defined on a lattice approximating Sd- ' ,  
as has already been done for d = 2 (Penson and Kolb 1984, Alcaraz et a1 1985). 

It would of course be useful to obtain a formula for A for geometries which are 
more easily approximated by a lattice, for example a 2-torusxR'. Such a formula 
cannot be obtained by conformal transformation, because these spaces are flat, and 
for d # 2 the group of conformal transformations of flat space into itself is too restricted. 

The only simple test of our result we have been able to find is in the spherical 
model, equivalent to the n + 00 limit of the n-vector model, defined by the reduced 
Hamiltonian 

X = [ f (Vcp)2+fpicp2+~(hon- ' ) (cp2)2]  ddx. (9) 
J 

For d = 3 the unrenormalised propagator on S 2  xR' is found by decomposing cp( U, 8, +) 
into normal modes eikuKm(6, +). The result is 

G?",(k) = [ k 2 +  K 2 1 ( l +  1 ) +  pi ] - ' .  (10) 
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In the n + 00 limit the only effect of the interactions (Ma 1976) is to replace p i  by p2, 
where p2 is determined self-consistently by 

1 -"+T 2.rr4.rrR2,, c k2+R-21(1+1)+p2'  

The sum over m gives a factor of 21 + 1. The values of pg corresponding to the bulk 
critical point is given by 

so that the correlation length in the cylindrical geometry is 6 = p-' where 

21+1 d2k, 1 

The sums over modes are separately well defined only with an ultraviolet cut-off 

k2+ k:<A2 k2+ R-'l( 1 + 1 )  < A2. (14) 

Equation (13) determines p2 as a function of R and A. For RA >> 1 the left-hand side 
should be independent of A. However, individually the sum and the integral in the 
large round brackets diverge after integration over k For this divergence to cancel 
the sum must be a close approximation to the integral. This occurs if we take 
p2=  1/4RZ, because then the large round brackets may be written 

which actually vanishes after integration over k. A more careful analysis shows that 
the solution of (13) is 

+ o ( R - ~ ) .  
+--- 1 

4R2 rAOR3 

For arbitrary d between 2 and 4, the same cancellation happens, with l ( l +  1)  
replaced by l ( l +  d -2) ,  and so 

/.,L~- ( d  - 2)2/4R2 12<d<41. (17) 

This verifies our general result ( - I =  x/ R since x = f( d - 2 + q), and for the n + 00 limit 
q =o. 

In conclusion we have shown how the universal amplitude relation for finite width 
two-dimensional strips generalises to higher dimensions. Whether this will provide a 
useful numerical approach to critical exponents remains to be seen. 

The author thanks V Privman for discussions. This work was supported by NSF Grant 
PHY83-13324. 
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